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Large Berry phases in layered graphene
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Brillouin zones of graphene systems possess Dirac points, where band degeneracies occur. We study the
variety of (and large magnitude of) phases that the electronic states can acquire when a uniform time-
dependent electric field carries the electrons around one or more Dirac points in a nonconcentric fashion. An
experimentally accessible determination of excess Berry phases is proposed involving the Zitterbewegung of
electronic current near an orthogonality point in adiabatic motion.
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I. INTRODUCTION

The recent research interest in graphene owes much to the
remarkable electronic properties near the charge-neutrality
Dirac points (DPs) (conical intersections or linear electronic
degeneracies) at the K and K’ points in the Brillouin
zone.'~% Also several studies devoted to graphene layers of
various thicknesses have appeared recently.”"'> Based on the
earlier elucidation of the Brillouin-zone structure in Refs. 14
and 15 and the more recent works in Refs. 16—19, in bilay-
ered graphene one centrally and three trigonally arranged
DPs around the K-type points can be located. The electronic
motion is described by a Hamiltonian that includes interac-
tions between different sites in either plane and between the
two planes and expressed the coupling between four elec-
tronic bands. An approximate and simplified model using
two 2 X 2 Hamiltonians (for the K and K’ points) was given
in Ref. 8. The repercussions of different Hamiltonians on the
zero energy minimal conductivity were discussed in Ref. 12,
where the effect of the trigonal distortion was found to be
significant, whereas the simplified Hamiltonian of Ref. 10
led to results similar to those of the four band model.

Another development regarded the Berry phase?*?! ac-
quired upon circling around the DPs in the k plane.>”%13 It
was assumed in these works that a circling around each point
leads to an added value of *r to the geometric phase, with
the sign depending on derivatives in the neighborhood of the
intersection points. (The sign of the Berry phase encountered
in the molecular physics; electron-vibration context was de-
termined in Refs. 22 and 23.) It is the purpose of the present
work to show that when a Berry phase is actually created in
a physical adiabatically cyclic process, then the magnitude of
the phase will differ from the assumed value of = and is
more correctly (2n+ 1), where n is a signed integer or zero.
The above result holds for a single DP when the circling is
performed in a nonconcentric manner (and, likewise, when
the circling is around an odd number of intersections).
Analogously, when the circle is around two or an even num-
ber of intersection points the assumed result of £27 or zero
is superseded by 2nr (with n taking values as before). These
predictions are based on a proper treatment of the time-
dependent adiabatic process, which requires near an orthogo-
nality point a formalism that involves a correction term be-
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yond the extreme adiabatic limit.>*~0 [At an “orthogonality
point” the momentary wave function has zero overlap with
the starting wave function. The integer n is related to the
varying speed of the electron along its cyclic path. This is
quantified by the parameter n’, named “the inverse relative
slowness” and defined below in Eq. (19). In the present con-
text and formalism the extreme adiabatic limit is defined by
the vanishing of the ratio € in Eq. (14) for all times, while n’
in Eq. (18) is finite and possibly numerically large. A con-
ventional treatment would first neglect the second and third
terms in Eq. (16) and then obtain a * 7 Berry phase from the
sign change in the first term. We retain the remaining terms
and calculate the acquired phases at the several zeros near
the orthogonality point, neglecting the small terms only after
exiting from the orthogonality neighborhood.]

Now it is true that Berry phases are usually written
mod 27 and are gauge invariant only under conditions of
complete cycling, but the effect of the extra |n|# 0 shows up
even before completion of the cycling, as an open path
phase,?’ and can in principle be measurable. (The extra ac-
quired phase is gauge invariant.?*~2% Experimental verifica-
tion of the extra open path phase has been proposed
before.?®) An essential point (not present in previous
electron-nuclear settings) is that in graphene it is technically
feasible to control the phase acquisition by varying the elec-
tron concentration and by an electric field. The former is
achieved by the manipulation of the (time-constant) gate
voltage (through the substrate) and the latter by a well de-
signed application of a time-varying uniform in-plane elec-
tric field that guides the electronic motion through the “ac-
celeration theorem” (of which more in the sequel).
Application of a time independent electric field was treated
in Ref. 29. In the present setting of the adiabatic change in
the electronic wave vector, the magnitude of the applied
electric field would be of the order of 10* V/m or less; this
is rather less than the value 10’ V/m proposed in the pre-
ceding reference, appropriate to conditions that are not adia-
batic.

Although in this work we do not detail the experimental
aspects of the phase acquisition, we do propose and investi-
gate theoretically an unconventional method for the experi-
mental observation of the Berry phase, feasible for high
Berry phase values. (In our future mentioning of the phase,
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the dynamic phase of Ref. 20 is understood to be subtracted
from the total wave-function phase. We return to the dy-
namic phase in Sec. VII.) This is made possible during the
acquisition of the phase in the vicinity of the orthogonality
point and is measurable through the Zitterbewegung (ZB) of
the electronic motion (current). ZB in graphene related ma-
terials was the subject of several works.3%33 (Also related is
Ref. 34.) It is shown in Sec. VI that in an adiabatically time
developing eigenstate, ZB is observable near the orthogonal-
ity points. The time duration of the ZB is associated with the
inverse relative slowness parameter. In the present context
where adiabatic changes are considered, the duration for
which ZB has to be observed is expected to be rather large,
of the order of 10° fs or more. (Restrictions on the duration
of the ZB by the finite width of the electronic wave packet
were previously considered in Refs. 31, 33, and 35.)

II. GRAPHENE-BASED HAMILTONIANS
A. Monolayer graphene

This is a zero-gap semiconductor, whose zero-temperature
electronic properties in the undoped or slightly doped form
arise from the neighborhood of hexagonally arranged K
points (the DPs).> Here the valence and conduction bands
meet in a conical intersection. The Hamiltonian, expressed
by means of the planar quasiparticle momenta (k,,k,) mea-
sured from a K point, has the form of a two-dimensional

Dirac-Hamiltonian,

k, k

H=v F( * y ), (1)
ky —k,

where a real representation was adopted for the electronic
band states and vy is the Fermi velocity (about 10® m/s).
The off-diagonal complex Hamiltonian commonly used in
the graphene literature is MTHM, having applied the unitary
transformation matrix,

Y 1(1 1) @)
_\“5 -1 i ’

to the above Hamiltonian H. For future use we note that for
momenta |k| whose cyclic time rate of change is represented
by w, the requirement of adiabaticity is given in a monolayer
graphene by

B. Graphene bilayer

Four electronic bands describe the salient properties. A
concise form of the four-band Hamiltonian for an electron in
a k (wave vector) state near the K and K’ points was written
out in Ref. 12 [Eq. (1) there]. An approximate two-band
Hamiltonian proposed by Ref. 8 can be written in a real
electronic state representation, following the real-matrix no-
tation used in Refs. 24-26 as
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- U(R) V(E)) "

Hy(k) = ( _ -
V(k) U(k)

for, e.g., the K point. Here the designation K is used for the
reduced in-plane wave vector measured from the K point,

-k (kk) _ - -
k= " _kL = (ky.ky), (5)
0 0
where k0=§2 Z,;) having introduced the intralayer coupling

strength vy, between the basis atoms A and B within the first
layer and between A’ and B’ within the second layer, the
vertical interlayer A-B’ coupling strength v, the (weaker)
diagonal interlayer A’-B coupling strength <3, and the hon-
eycomb lattice constant a. Numerical values that have been
accepted for these parameters are 7y,=3.16 eV, v,

=0.39 eV, v3=0.315 eV, a=0.246 nm, and kg
=0.057 75 nm~!. The matrix elements are

U(K) = eg[k, — (k; - /%)], (6)

V(E) = eo[g), + 2]};];;], (7)

with an overall coupling energy e, = yl(%)2=3.87 meV. For
a K’ point the signs of the first term in U(k) and of the
second term in V(K) need to be changed.

III. MOTION OF ELECTRONS

When subject to an electric field E, the wave vector of an
electron (with charge —e) changes in time () according to the
acceleration theorem,36-37

dk e
—=-—-E. 8
Ul (®)

A spatially uniform and time-varying electric field is ex-
pressed in terms of a vector potential A(r) through

B IA(1)
giving
e
k(1) = gA(t) (10)

apart from an initial value of the wave vector. Thus, the
above Hamiltonians are to be understood as functions of the
vector potential or of the time integral of the externally ap-
plied electric field. This will be the meaning attached to the

independent variables (k or K) in the Hamiltonians, though
(for simplicity of notation) we shall continue to write them
as functions of the time-dependent planar wave vectors
rather than that of A. In the sequel we shall assume the
following time dependences for the moving reduced wave
vector:

k(1) =a cos(wr) +c, (11)
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k(1) = b sin(w1), (12)

with constants a, b, and ¢ and a period of T=27/w.

IV. GEOMETRIC PHASE OF THE WAVE
FUNCTION COMPONENT

Solutions of the time-dependent Schrodinger equation
(TDSE), written for a general form of a periodic 2 X2
Hamiltonian as in Eq. (4) and valid in the adiabatic limit,
were given in Refs. 24-26, with special regard to the geo-
metric phase acquired near an “orthogonality time” ,,. This is
the instant at which the initially engaged component of the
quasispinor vanishes or the state becomes orthogonal to the
initial state. There may be several such instants, depending
on the path taken by the time-dependent parameters. As al-
ready remarked in Sec. I, the solutions of the above cited
works went one approximation (in the adiabatic parameter to
be defined shortly) beyond the formal adiabatic wave func-
tion. The instantaneous energy and twice the mixing angle
appropriate to the Hamiltonian in Eq. (4) [and analogously to
that in Eq. (1)] are

WD) = VUK0)? + V&), (13)
x(1) = arctanw. (14)
U(k(t))
The (small) adiabaticity parameter is in terms of these
_ X0
e(r) = W) (15)

We now turn to the solution of the time-dependent
Schrodinger equation in the form

J(f(1) -U@ V(@) \(f@)
i— = (16)

ar\g(1) V() U@/ \g(@)
with the initial condition for an energy eigenstate f(r=0)=1,
g(t=0)=0. In Refs. 24-26 we have obtained (after the re-
moval of the dynamic phase factor) the following component

amplitudes of the wave function in the neighborhood of an
orthogonality point ¢, as

_ l . _ _ ; p—; e—z:‘\W(zU)l(t—tv) :|
fl)= 2)((tv)[(t t) W) (1 (t,) )
F ST, (1)
1
g(t)=- Smix(tv) =-1 (18)

The expressions are correct to the order of |x(z,)(t—1,)|*.

’ — —lﬂ
n(tv)_'n- G(IU)’

which ratio compares the slownesses [or adiabaticities, de-
fined in Eq. (15)] at the starting points and at the orthogo-

(19)
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nality point. It is a key quantity in the phase acquisition
phenomenon, as we shall describe below. In contrast, the last
term on the right of Eq. (17) is of little importance. (This has
been confirmed both theoretically and by numerical compu-
tation.) In it ¢(z,) is the fractional part of the energy integral
2[¢W(t)dt [see Eq. (31) of Ref. 25]. The energy (or fre-
quency) 2|W(z,)| in the complex exponential is the energy
separation between the two eigenstates near the orthogonal-
ity point and will show up in our treatment of the electronic
motion (or current) in Sec. VI as a Zitterbewegung.

We shall now describe the geometric phase acquisition
process in terms of the minority component f(¢) in Eq. (17).
Were it only the first term, then a phase of —7 would accrue
upon traversing the zero at t=¢, from r<t, to t>t¢,. This
phase is continuously carried in f(z) and would remain with
the wave function also when a full revolution is made at
which instant the g(z) component becomes again zero. Thus,
—1r is indeed the final result (the Berry phase) as long as
n'(1,) is smaller than or of the order of 1. However, when
n'(1,) is numerically large, there are further zeros in the com-
plex ¢ plane, which are all located in the lower half of the
complex ¢ plane [at shallow depths of the order
1/|W(z,)|].*-2° Looking now for the moment at the behavior
of the real part of f(r) [Re f(z)], with algebraically increasing
real ¢, as this passes each adjacent (complex) zero, Re f{(z)
acquires a further —r phase. This is also how the full func-
tion f(r) acquires its phase, with the role of the imaginary
part being to ensure that the phase of f(¢) changes in a
smooth continuous way. The rate of 7 acquisitions is clearly
2|W(t,)|/ 7 (a constant for a given orthogonality point ¢,).

How many (complex) zeros are there in the asymptotic
limit of large |n’(#,)|? Taking into account that the modulus
of the complex exponential in Eq. (17) is unity, we clearly

see that the complex zeros arise only as long as |r—t,]

() . . . .
= 27|nvlv((zv))| since otherwise the first term will dominate the

function and zeros are not possible. Taking into account the
previously obtained value [2W(t,)|/ 7 for the rate of acquisi-
tion of 7’s, we see that the number n(z,) (an integer) of
acquired 7 phases is for either positive or negative r—1,’s
about 2n'(z,). (The same result would be obtained by count-
ing the number of loops around the origin of f(r) since each
(counterclockwise) loop contributes a 271 phase and each
loop around the origin implicates two zeros of Re f(r) [as
well as of Im f(7)].)

The net result is then that the acquired Berry phase around
t=t, is

[1+2n(t,)]m, (20)

where n(t,) is a signed integer (or zero) close to the ratio
n'(1,) defined in Eq. (15). n’ is named the inverse slowness
ratio and examples taken from molecular degeneracies have
shown that it is unity for concentric circular motion around a
single intersection point (and, in the case of several intersec-
tion points, for concentric circular motion around one inter-
section point provided the motion is sufficiently far away
from other intersections). However it can be large for cir-
cling that starts close to an intersection point and is not
concentric with it.?4-26-3 For graphene layers similar results
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FIG. 1. (Color online) Contours for bilayer graphene (in the
two-state representation). Broken curves (in red): the potential V
=0 [in the Hamiltonian of Eq. (4)]. Dotted curve (in blue): the
potential U=0. The circle (in green) denotes an evolution path. The
positions of the Dirac points are at the crossings of the broken and
dotted curves. In the text, the evolution starts at a positive value of
the abscissa. Orthogonality points #,, where y=1r, are where the
path intersects the broken (red) curve. For the evolution path shown
(circling radius=0.5, shift=0.3), there is only a single orthogonal
position #, on the circular path, which is located on the negative
abscissa. For circles shifted to the left it is possible to have two
more f,’s.

for the phase have now been found and are shown in a set of
figures. These are obtained by solving the time-dependent
Schrodinger equation and in them the acquired phases agree
very closely with (2n’+1)r, in which n’ is given by the
formula in Eq. (19). This depends only on quantities con-
tained in the Hamiltonian. The case of (monolayer)
graphene, with essentially isolated DPs (the K and K’
points), is formally identical to the single degeneracy results
shown in Sec. 3 of Ref. 38 and will not be reproduced here
although monolayer graphene may be the more convenient
candidate for the experimental verification of the theory.
[However, the 1 order of magnitude lower value of W(z,) in
bilayer graphene than in monolayer may make the oscilla-
tions easier to monitor. ]

In a graphene bilayer we have a DP at each K (and K’)
with three satellite DPs, trigonally situated around each
K-type point. Thus, this is a new situation also for the reason
that there exist for it both two- and four-dimensional Hilbert-
space descriptions.!®!> The Hamiltonian in the former de-
scription is shown in Egs. (6) and (7); some essential features
of the energy contours are shown in Fig. 1

We begin by showing results for a contour that starts close
to and just outside a trigonal DP and makes a beeline with a
path ultimately skirting round the central DP. [In Ref. 10 and
Fig. 2, the path might start at an energy of about (or smaller
than) 0.5¢, (roughly equivalent to an electron density below
4%x10'9 cm™2) or, otherwise, at k. =12k, ky=0 and then
return so as to come down beyond the origin of k, the K
point.] A full contour of this type is not expected to change
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FIG. 2. (Color online) Inverse relative slowness parameter n’
for adiabatic circling plotted by open circles (in blue) against the
starting distance from the central Dirac point (DP) in the direction
of a trigonal DP [given in units (DP), measuring the distance of the
trigonal DP from the central one]. n' is approximated by the integer
n in the Berry phase (2n+ 1) acquired at an orthogonality point ¢,
during circling. A circular path with radius of 0.5 (DP) was as-
sumed. The inverse slowness parameter n’ is large when the path
starts near the central DP or (numerically) at just half way to the
trigonal DP. (Here n’ turns negative.) The triangles (in red) show
the results of numerically computing the phase jumps. Some tri-
angles are missing because of numerical difficulties in achieving
convergence.

the sign of the wave function (with the dynamic phase dis-
regarded) since two DPs are encompassed by it. In this case
one obtains the variation in the 2n part of the phase near an
orthogonality point, which is of interest. In Fig. 2 we show
(with open circle symbols) the resulting n’ in a rather simple
circling situation when the contour starts to the right of the
central DP and cycles counterclockwise round it and inside
the trigonal DPs. An orthogonality point #, is met at about
(but not at exactly) half a full circle. Here the (open path)
geometric phase makes a jump, whose magnitude is close to
the ratio n’(z,) defined above. For a circular contour around
the central DP (which is the path here taken) the magnitude
of n’ depends on the distance of the starting point (located
between the rightmost and the central DPs). As Fig. 2 shows,
|n’| is large for contours starting close to the central DP and
decreases as the starting point recedes only to become again
large when the starting point is precisely at half way to a
trigonal DP. This finding arises from the presence of several
DPs and is absent for a Brillouin zone with a single DP. The
triangles in the same figure show, for comparison, the phase
jumps as obtained by numerically solving the time-
dependent Schrodinger equation (the subject of Sec. V).

V. NUMERICAL VERIFICATION OF THE “INVERSE
RELATIVE SLOWNESS” PREDICTION

In Refs. 24-26 the Berry phase was associated (through
what we regard as the proper treatment of the TDSE in the
near adiabatic limit) with the quantity (2n’'+1)7 (or 2n’ ),
n' being (as described above) the inverse relative slowness.
In the quoted articles the theory was verified by numerical
solution of the TDSE in the adiabatic limit in the context of
nuclear motion in electronically degenerate molecules. In the
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FIG. 3. Adiabatic phase evolution in bilayered graphene (ob-
tained from numerical solution of the time-dependent Schrodinger
equation within the two-state formalism). The adiabatic revolution
period T is 277X 10° in inverse units of the Fermi velocity times the
DP distance. Circular cycling meets three orthogonality points
along its path (as explained in the caption of Fig. 1). In the upper
drawing, at these points steep rises take place in the phase, with the
middle one (on the left part of the abscissa in Fig. 1) being the
longest rise. The near-horizontal wavy part becomes straightened
out, as the motion becomes more adiabatic. In the lower drawing
the first 7, region (above the k, axis) is enlarged.

present graphene context (which differs from the molecular
setting in essential physical and some formal details) the
numerically obtained phase jump values n have been plotted
in Fig. 2 with triangles. These show good agreement with the
values (open circles) obtained algebraically. Where the tri-
angles are missing, this is due to numerical difficulties in
achieving convergence.

An analogous verification has been performed by solving
the TDSE for a graphene bilayer Hamiltonian, including a
periodic time-dependent electric field E(r) and calculating at
each instant ¢ the phase of the wave function. In Fig. 3, the
phase development is shown for one full cycle of the electric
field and the detail for the first step. The nonconstant rising
parts of the phase near the orthogonality points will be the
subject of the section on “currents.”

The drawings in Figs. 1-3 have been based on the two-
state (approximate) description of bilayer graphene. In Fig. 4
we compare the component phases obtained from forward
integration of the time-dependent Schrodinger equation for
the four state with that for the approximated two-state
description.!® There are no differences visible to the naked
eye, which we interpret as a satisfactory test for the robust-
ness of the adiabatic theory formulated in our previous pa-
pers.
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FIG. 4. (Color online) Comparison of the Berry phase behaviors
of the four- and two-state models in graphene bilayer. Curves for
the four state model are slightly displaced downward for clarity.
Two different starting positions to the right of the central DP were
chosen, expressed in units of the distance to the rightmost DP. Up-
per frame starting position: 0.8. Lower frame starting position: 0.25.
The adiabatic revolution period T is 277X 10* in inverse units of the
Fermi velocity times the DP distance. Note the different ordinate
scales.

VI. ZITTERBEWEGUNG OF THE CURRENT

The equation of motion for the Heisenberg position op-
erator r(7) of an electron is ir(tf)=—[H,r(z)]. The current is
j(1)=—er(r). We shall evaluate this for a monolayer graphene
near its K point where the expressions are quite simple,
rather than for a graphene bilayer, for which the results are
analogous but more complicated. Inserting the Hamiltonian
from Eq. (1) one obtains immediately the velocity compo-
nents as

A o

£ =i +30f=vor . .. (21)
J -1

The observable expectation value of the velocity is the ex-
pectation value over the wave function, namely,

>
>

F0) =80 | J.A ﬁ ’ (22)

where the stars denote complex conjugates. Two situations
need now to be considered.
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A. Electronic motion during most of the contour path
1. Extreme adiabatic limit, e —0

Here
(.87 = (f.g) = <COS%X(I),— sin%x(ﬁ) (23)

in terms of the mixing angle % x(7), which effects the diago-
nalization of the 2 X2 Hamiltonian. For the monolayer
Hamiltonian in Eq. (1) this is defined through x(z)
Earctanl—‘;z—arctanllzf—((g, so that it is possible to express the
momentum  components  as ky(1)=[Kk|cos x(1), k(1)
=—|k|sin x(#), where the time dependence arises from the
applied vector potential as in Eq. (10). Then Eq. (22) evalu-
ates to

(€(1)) = vplcos x(1)i—sin x(D]], (24)

which merely reaffirms the equivalence of the time behaviors
of the momentum and velocity vectors for a completely adia-
batic motion along most of the pathway.

2. First-order adiabatic correction

When the wave-function components are expanded cor-
rect to the order of the small adiabatic parameters €(z), one
obtains the terms describing the ZB of the electronic veloci-
ties,

UFG(O)

((t)zp =~ sin x(#)sin 21(1),

G()zs =~ vre(0)

5 cos x(r)sin 21(r), (25)

where we have denoted the integral over energy as

I(1) = fldt'W(t’). (26)

0

There may be some practical difficulties in the observation of
this motion as it is superimposed on a larger motion shown
in Eq. (24).

B. Near the orthogonality point ¢,

Here the eigenstate component amplitudes (f,g) take the
time-dependent forms shown in Eqgs. (17) and (18). Substi-
tution into Eq. (22) shows that in the adiabatic limit the x
component moves with a uniform speed of v;. However, the
y component of the electron has the value

¥(6)= * 20, Re f(). (27)

As discussed in Sec. 1V, this is a small quantity of the order
of the small adiabaticity parameter €(z,) which oscillates
with the period characteristic of ZB, given in the present case
by 7/ W(t,). The eigenstate oscillations take place for a time

interval of about #;), placed symmetrically about #,. This
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interval can be quite large in case of strongly nonconcentric
circling, for which the relative inverse slowness n’ [defined
in Eq. (19)] has large values (e.g., of the order of 10%).%

VII. SUBTRACTION OF THE DYNAMIC PHASE

The results in Sec. IV have the following implication
[again phrased for simplicity’s sake for the monolayer
graphene case (Sec. I A)]: for a given radius of circling k,
around a K point the acquired Berry phase can be increased
by diminishing the distance Ak between the starting point
and the center of the circular path. The increase in the Berry
phase is about 27 times n' (the relative inverse slowness)
which is unity when the distance Ak=k,. and increases be-
yond bounds as Ak— 0. A hypothetical direct experimental
determination of the augmented phase would then likely per-
form two measurements at or close to these two limits.

Since the above theory relates to the Berry phase, while
the total acquired phase includes also the dynamical phase
(designated ¢p), it is purposeful to estimate the latter. It was
shown in Refs. 24-26 that in the adiabatic limit [Eq. (3)
above] this is simply given by the time integral of the instan-
taneous energy. Then for a uniform circular motion in the k
plane,

27w

V'/[(kc cos ) — AkT* + (k. sin wr)*dt.

¢D(kc’Ak) = va

0
(28)

This elementary integral has the following values in the two
limiting cases discussed above:

vrlk,
concentric cycling: ng(kC,kc):Z’JTﬂ, (29)
®
. ’_UF|kc|
touching:  ¢p(k,,0) =2v2——. (30)
w

These dynamic phase values can be subtracted from the ob-
served total phase to obtain the Berry phase. From our direct
computations of the acquired total phase by the wave func-
tion, for situations such as shown in Fig. 3, we find that for
large |n'| values the phase is dominated by the Berry phase.
(The dynamic phases at the three phase jumps shown in that
figure amount to —20, —60, and —20 rad.)

VIII. CONCLUSION

This work has focused on two (interrelated) issues in the
context of monolayered and bilayered graphenes. First,
(based on our past works on adiabatic cycling, which are
only briefly recapitulated here) we have shown that large
amplitude (and gauge-invariant) phases of the electronic
wave functions can be generated in two-dimensional struc-
tures of the graphene type. A conceptual experimental proce-
dure involving a uniform time-varying electric field has been
outlined, though without our proposing detailed prescription.
The key geometrical element is the nonconcentric adiabatic
path in k space around the K points.
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The second issue is the association of the developmental
stage of the large amplitude Berry phase (near the orthogo-
nality points) with the Zitterbewegung of the electronic mo-
tion and its observational possibility. So far little attention
has been given to the possibility of experimentally detecting
the Berry phase in the neighborhood of an orthogonality
point; though some theoretically oriented remarks regarding
the abrupt nature of this developmental stage of the Berry
phase have been made.***! These remarks addressed the

PHYSICAL REVIEW B 78, 205311 (2008)

minimal *a phase acquisitions near each orthogonality
point, whereas our proposal for the observation of the phase
by Zitterbewegung is for large Berry phases.
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